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ABSTRACT

Random vibration is becoming increasingly recogdizas the most realistic
method of simulating the dynamic environment ofitaw} applications. Whereas the use
of random vibration specifications was previouslyniled to particular missile
applications, its use has been extended to areawhioh sinusoidal vibration has
historically predominated, including propeller dnvaircraft and even moderate shipboard
environments. These changes have evolved frongtbeing awareness that random
motion is the rule, rather than the exception, &oedh advances in electronics which
improve our ability to measure and duplicate complgnamic environments.

The purpose of this article is to present somealdnmental concepts of random
vibration which should be understood when desigaistructure or an isolation system.



INTRODUCTION

Random vibration is somewhat of a misnomer. d&f generally accepted meaning
of the term "random" were applicable, it would rm# possible to analyze a system
subjected to "random" vibration. Furthermorehistterm were considered in the context
of having no specific pattern (i.e., haphazard)wduld not be possible to define a
vibration environment, for the environment wouldyan a totally unpredictable manner.

Fortunately, this is not the case. The majorityamdom processes fall in a special
category termed stationary. This means that thanpaters by which random vibration is
characterized do not change significantly when yaeal statistically over a given period
of time - the RMS amplitude is constant with timéor instance, the vibration generated
by a particular event, say, a missile launch, ballstatistically similar whether the event is
measured today or six months from today. By ingilan, this also means that the
vibration would be statistically similar for all ssiles of the same design. It is possible to
subdivide a process into a number of sub-processes, of which could be considered to
be stationary. For example, a missile environnantld consist of several stationary
processes, such as: captive carry, buffet, lawarah free flight. Each of these sub-
processes have unique amplitude, frequency and d¢hmeacteristics, requiring separate
analyses and considerations.

The assumption of a stationary process is es$entlzoth a technical and legal
sense. As previously stated, it would not be fbsdor a designer to analyze a system,
nor for a user to test a system prior to installatin the field, if the vibration excitation
were not stationary. Consequently, it would notpbasible to develop a legally binding
specification. In subsequent conversations, dssumed that the random excitation is a
stationary process.

Any vibration is described by the time historyrmobtion, where the amplitude of
the motion is expressed in terms of displacemeeglpcity or acceleration. Sinusoidal
vibration is the simplest motion, and can be fullgscribed by straightforward
mathematical equations. Figure 1 shows the anggitime plot of a sinusoidal vibration,
and indicates that sinusoidal vibration is cychd aepetitive. In other words, if frequency
and amplitude (or time and amplitude) are defirtbd, motion can be predicted at any
point in time.
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Figure 1. Amplitude-Time History of Sinusoidal Vétion
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A random vibration is one whose absolute valueoispredictable at any point in
time. As opposed to sinusoidal vibration, therencs well defined periodicity - the
amplitude at any point in time is not related tattht any other point in time. Figure 2
shows the amplitude time history of a random vibrat The lack of periodicity is
apparent. A major difference between sinusoidatation and random vibration lies in
the fact that for the latter, numerous frequenamay be excited at the same time. Thus
structural resonances of different components can elkcited simultaneously, the
interaction of which could be vastly different frosmusoidal vibration, wherein each
resonance would be excited separately.

bmplitude

Time

Figure 2. Amplitude-Time History of Random Vibiati

Although the instantaneous amplitude of a randdmation cannot be expressed
mathematically as an exact function of time, ipassible to determine the probability of
occurrence of a particular amplitude on a staast@sis.

To characterize a stationary process, an enseaflpgessible_timehistories must
be obtained, wherein the amplitude measured over the frequen@nge of excitation.
Thus, the three parameters of interest are: fregpletime and amplitude. This
information would provide the ability to analyzeandom process in a statistical sense.
The characterization of random vibration typicalgsults in a frequency spectrum of
Power Spectral Density (PSD) or Acceleration Spéddensity (ASD), which designates
the mean square value of some magnitude passedilsr.adivided by the bandwidth of
the filter. Thus, Power Spectral Desnity definbe distribution of power over the
frequency range of excitation.

The equipment designer is interested in avoidieghanical failure and equipment
malfunction. These may be produced by differentclmeisms, requiring different
methods of corrective action. To the designerdoamvibration could be considered as
either:

a) an infinite number of harmonic vibrations withpredictable amplitude and phase
relationships in the frequency domain; or

b) the sum of an infinite number of infinitesinslocks occurring randomly in the time
domain.
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In the first case, response at a particular fraquenay be the primary concern.
For example, when a displacement sensitive dewcexcited at its natural frequency,
relatively large displacements may result in madtion. In such a case, the malfunction
might be corrected by reducing the amplitude ofitakon at the particular frequency of
concern - the natural frequency of the device.sThight be accomplished by inserting a
vibration isolator between the source of excitatiand the device. Alternatively,
displacement might be reduced by adjusting thénssk of the device, or by increasing
damping at the natural frequency of the device.

If the random vibration is considered as an itéimumber of infinitesimal shocks,
the overall Grms may result in a fatigue relatedctiral failure of a component due to the
intermittent shocks associated with the randomtation. In this case, the problem might
be corrected by reducing the overall Grms or byaasing the strength of the component.

There is a relationship between these consideatid he nature of the equipment
problem will affect the type of corrective actianlie investigated.
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STATISTICAL ASPECTS

Statistics is the science pfedicting the probability of occurrence of a partar
event. In random vibration, it may be desired tedpct the probability of a response
exceeding a particular value. For instance, ilaclbbox has a Ys-inch clearance to an
adjacent structure, it is ncessary to know the gdity of the black box impacting the
structure. Alternatively, since the probabilityiofpact would never be absolutely zero, it
would also be of interest to predict the averageetbetween successive impacts, or the
average number of times a particular amplitude azayr in a given duration. This would
be of interest in calculating acceleration (orstjeand relating these values to the fatigue

life of a component.

The most commonly used probability distribution tlee Normal (Gaussian)
distribution. The probability density function famormal distribution is given by:

‘J"E_ e[(—lf’E}(X}'ers]Z]
m
Equation 1

Equation 1 is plotted as Figure 3, which is thabability of occurrence of the ratio
of the instantaneous value to the RMS value. Ilndiign 1, X and Xrms could have units
of displacement, velocity or acceleration, or datiles of these terms.
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Figure 3. Probability Density Function for a NoirBastribution
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The probability that an amplitude lies between tatues is equal to the area under
the normal curve between the two values. By d&dimj the total area under the curve is
equal to unity. Thus, if the event in questiomaisolutely certain to happen, the area
under the curve, the probability of occurrenceegsal to 1.0. If the event is certain not
happen, the area under the curve, the probabilipcourrence, is zero. Probabilities are
positive numbers between zero and one, and canxpeessed as a percentage. For
example, the probability that the magnitude of Xhsrfalls between +1 and -1 is equal to
the shaded area shown on Figure 3. This areadjsnBich means that there is a 68%
probability that the actual amplitude will be beamethe X/Xrms value of +1 and -1. This
is commonly referred to as the "one sigma" proligbilThe corresponding two sigma and
three sigma probabilities are .95 and .997, respadygt

Table | gives areas under the normal distributbomve for various values of
X/IXrms.

Since the probability density function approache=o assymptotically, the
probability of a particular event not occurring Wwiever be exactly zero. Such being the
case, what is a reasonable approach in evaluagimgom vibration? Returning to the
problem of the black box with a Ys-inch clearancemoadjacent structure, if Xrms were
.0833 inches, the three sigma value would be .2bes (3 x.0833), and the probability of
impact would be .3%. The probability of impact lkbbe reduced by reducing Xrms. For
example, if Xrms were decreased to .0625, a faymaideflection would be required to
cause impact, and the probability of impact wowddéduced to .001%.

The generally accepted procedure is to use a fige®a value for design purposes.

In some cases, the use of higher values may hégdsFrequently, there are additional
restraints precluding the use of higher values.
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CHARACTERIZATION OF INPUT ACCELERATION AND DISPLACEMENT

The simplest random excitation to analyze is aldanited white spectrum shown
in Figure 4.

PO
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Figure 4. Band Limited White Spectrum

The overall input Grms is the square root of tteaainder the curve, i.e.,

Frms = W {f_ - f_2 .
Bl Equation 2

This value could be used in Equation 1 to pretietprobability of occurrence of
instantaneous values of acceleration for a randgmak For design purposes, Grms
would generally be multiplied by three to provitieete sigma values.

In actual practice, it is not possible for a vilma shaker to generate the
instantaneous drop off shown in Figure 4. Consetlyespecifications generally show a
roll off rate in terms of decibels per octave (dBIQ2 Figure 5 shows a possible input
vibration spectra including roll-off rates.

f f Frequency [Hz) f i

Figure 5. Possible Random Vibration Input Sectrum
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As in Figure 4, the overall Grms is the square addhe total area under the curve.
However, since most curves are plotted as straigés on log-log paper, calculating the
area under the sloped lines is more complicated fbathe region of constant PSD.
Appendix A provides equations used to calculatdoBsloped lines. To determine Grms
for a spectrum with numerous break pointé, @r all areas are summed, and the square
root of this summation results in overall Grms.

A decibel is a logarithmic notation for expresshagios between two quantities.
For Power Spectral Density*(iz), the following equation is used to relate tvadues of
PSD:

AdB = 10 log [W/W5] Equation 3

Figure 5 could be constructed using this equataow, knowing that an octave is a
doubling or halving of frequency (e.g., 8 Hz andHbH are separated by one octave as are
80 Hz and 160 Hz).

Displacement could be analyzed in the same maamsmercceleration, except that
rather than using units of/giz, the units would be ffHz. The RMS displacement would
be the square root of the area under the curve?i. However, since accelerometers
are the most frequently used method of measurindora vibration, alternate methods are
used to determine displacement. For a band limiddte spectrum, the RMS
displacement can be shown to be given by:

_ 1 3
xrms - IGrms x E \/i f2 - f1 1
ar? [ 3 £, £ £, - f ]
(1) () n-n Equation 4

where, Gys = input acceleration
g = acceleration constant
=386 in./sec.2
f1 = lower frequency, Hz

f, = upper frequency, Hz
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For most cases; fs significantly higher than &nd Equation 4 can be
approximated by:

SESG
rms

rm=

3
FU Equation 5

Equation 5 represents the one sigma stroke c#yabédcessary to generate the
power spectral density having an overall accelematiGrms, and upper and lower
frequencies# and f, respectively. Equations 4 and 5 could be usetbmjunction with
Equation 1 to determine the probability of occuceeof a particular input displacement.
In practice, input displacement is typically clipgpelectronically at the three sigma value,
as is the three sigma input Grms.
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|ISOLATION OF RANDOM VIBRATION

If a mass supported on vibration isolators is ectigid to a stationary, Gaussian
random vibration input, the response will be aistary, Gaussian random response.
Insertion of vibration isolators will change the @itudes of response, such as Power
Spectral Density and Grms, but the previously dised statistical concepts remain
applicable.

The Power Spectral Densities of the isolated eqai (response) are related to
those at the foundation (input) by the followingiation

Wout = Win T?A Equation 6

where, W, = Power Spectral Density on isolated equipmeiitiz
Wi, = Input Power Spectral Density/igz

Ta = Absolute Transmissibility of Isolation System

Thus, insertion of vibration isolators modifie® tllequency response to a random
vibration input in a similar manner to a sinusoidabration input. As in sinusoidal
vibration, there is a frequency region of amplifica and a frequency region of
attenuation. However, in random vibration, the hiuge of the response is modified by
transmissibility squared, whereas, in sinusoidbatation, the response is a linear function
of transmissibility. This difference is due to tfeet that in random vibration, we deal
with power, whereas, in sinusoidal vibration, waldeith acceleration.

The RMS acceleration (Grms) transmitted to théated equipment is equivalent

to the square root of the area under the curvehefrésponse Power Spectral Density
(g*/Hz). Thus,

Gl =\/jw1n T}__‘2 df
Equation 7
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For a band limited white spectrum, Equation 7 cassimplified to the following:

Equation 8

where, f = Isolation System Natural Frequency, Hz
Ta = Absolute Tranmissibility
Wi, = Input Power Spectral Density/lgz
Frequently, the relative displacement of a comporgerequired in order to ensure
that there is sufficient clearance to prevent migtahetal contact. If Grms transmitted to
the isolated equipment is known, the RMS displacdrnsegiven by:
rms = 9.75 Gs/ fi Equation 9

Equation 9 is useful since it provides the abildycalculate relative displacement
based on two directly measureable parametergs-aBd f.

If the random vibration excitation is a band liedt white spectrum, the RMS
displacement can be determined from:

Equation 10

The RMS displacement calculated by Equations B0oare typically multiplied by
three to determine the minimum clearance requgué¢vent metal-to-metal contact.

As previously mentioned, the probability of pautar event not occurring will
never be absolutely zero. There are times whenay be necessary to estimate the
average number of occurrences (N) of a particwantin a given time duration ( t). For
a band limited white spectrum, the average numbecaurrences in a given time duration
can be estimated by:

N = 2 f, At g(H/2XXms)2] Equation 11
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where, f = Natural Frequency, Hz
At = Time Interval, Seconds
XX ms = Amplltude Ratio

To demonstrate, if the previously discussed black e a ¥4 inch clearance (X),
and if Xrms (alsod rms) is .0833 inches, a three sigma deflection edalse metal-to-
metal contact. If the isolation system naturabfrency is 25 Hz, there would be an
average of 33 impacts in a one minute period. rithXwere reduced to .0625 inches, the
average number of impacts in a one minute perioddavoe reduced to one.

The mean time between consecutive occurrences beag more meaningful
statistic than the average number of occurrenctsma given time interval. This can be
determined by setting N=1 in Equation 11, and sg\forAt. Thus,

S to= 1 [{172)(xfnems)?]
=

2in

Equation 12

If the clearance between the black box and the adjatreicture were increased to
.50 inches, and Krms were .0833 inches and fn equal to 25 Hz, teamtime between
consecutive impacts would be approximately 370 siour
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APPENDIX A

Calculating Gy for Spectra of Various Shapes
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CALCULATIONS Grums

. ELAT SPECTRUM

Z
G =% [fz—fl]

|- — = —

II. WHEN SLOPE ISDEFINED IN TERMS OF dB/OCTAVE

1) For the unique case of a slope of -3dB/Octave:

G =WxfixIn[f/f]

Wl = -¥dEBfoOct.
\
|

f
1 £,

2) For positive slopes:

Z:=(R/3)+1, where R is slope in dB/Octave.

3) for negative sopes:

Z2=(R/3)-1, where R is the absolute valuéghefslope in dB/Octave.
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TABLE |

AREAS

under the S

STANDARD

NORMAL CURVE

fromOto z oz
z 0 1 2 3 4 8 9
0.0 .0000 .0040 .0040 .0120 .0160 .0199 .0239 .0279 1903 .0359
0.1 0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 1407 .0754
0.2 0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 0311 .1141
0.3 1179 1217 1255 1293 .1331  .1368  .1406  .1442 8014 .1517
0.4 1554 1591  .1628 .1664 .1700 .1736 .1772  .1808 4418 .1879
0.5 1915  .1950 .1985 .2019 .2054 .2088 .2123  .2157 9021 .2224
0.6 2258 2291  .2324 2357 2389  .2422 2454 2486 1825 .2549
0.7 2580 .2612  .2642 2673 2704 2734 2764 2794 2328 .2852
0.8 2881  .2910 .2939 .2967 .2996 .3023 .3051 .3078 0631 .3133
0.9 3159 .3186  .3212 .3238 .3264 .3289 .3315 .3340 6533 .3389
1.0 3413  .3438 3461 .3485 3508 .3531 .3554 .3577 9935 .3621
11 3643 3665 .3686 .3708 .3729 .3749 3770 .3790 1038 .3830
1.2 3849 3869 .3888 .3907 .3925 .3944  .3962 .3980 97.39 .4015
1.3 4032 4049 4066  .4082  .4099 4115 4131 4147 6241 4177
1.4 4192 4207 4222 4236 4251 4265 4279 4292 0643 .4319
15 4332 4345 4357 4370 4382 4394 4406 4418 2944 .4441
1.6 4452 4463 4474 4484 4495 4505 4515 4525 3545 .4545
17 4554 4564 4573 4582 4591 4599 4608  .4616 2546 .4633
1.8 4641 4649 4656  .4664 4671 4678  .4686  .4693 9946 .4706
1.9 4713 4719 4726 4732  A738 4744  A750 4756 6147 .4767
2.0 A772  AT78 4783  .4788 473 4798 4803  .4808 2481.4817
2.1 4821 4826 4830  .4834 4838 4842  .4846  .4850 5448 .4857
2.2 4861  .4864  .4868  .4871  .4875 4878  .4881  .4884 87.48 .4890
2.3 4893 4896  .4898  .4901  .4904  .4906  .4909  .4911 1349 .4916
2.4 4918 4920 4922 4925 4927 4929 4931  .4932 3449 .4936
25 4938 4940 4941 4943 4945 4946 4948 4949 5149 .4952
2.6 4953 4955 4956  .4957 4959 4960 .4961  .4962 6349 .4964
2.7 4965 4966  .4967 4968 4969 4970  .4971 4972 7349 .4974
2.8 4974 4975 4976 4977 4977 4978 4979 4979 8049 .4981
29 4981 4982 4982 4983 4984 4984 4985 4985 8649 .4986
3.0 4987 4987 4987  .4988 4988  .4989  .4989  .4989 9049 .4990
3.1 4990 4991 4991 4991 1992 4992 4992  .4992 9349 .4993
3.2 4993 4993 4994 4994 4999 4994 4994 4995 9549 .4995
33 4995 4995 4995 4996  .4996  .4996  .4996  .4996 9649 .4997
34 4997 4997 4997 4997 4997 4997 4997  .4997 9749 .4998
35 4998 4998 4998 4998 4998  .4998  .4998  .4998 9849 .4998
36 4998 4998 4999 4999 4999 4999 4999  .4999 9949 .4999
37 4999 4999 4999 4999 4999 4999 4999  .4999 9949 .4999
3.8 4999 4999 4999 4999 4999 4999 4999  .4999 9949 .4999
39 5000 5000 5000 5000 .5000 .5000 .5000 .5000 0050 .5000
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