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Passive Shock Isolation

Passive. shock isolation is discussed.in terms of the
performance of unidiréctional single-mass isolation
systems subjected teo idealized forms of shock excita-
tion.. The nature of shock environments and the fun-
damental principles of passive shock isolation are
presented. Selection of an isolator design involves
achieving an acceptable combination of maximum
acceleration (or force) and displacement response
magnitudes. Analytical design data are provided for
this purpose, including the effects of shock pulse
shape and time duration, isolator damping, and iso-
lator nonlinear stiffness characteristics. Optimum
design parameters are established where applicable.

Shock excitation of a mechanical system causes
the position of the system to change radically in a
relatively short period of time. It may be defined

in terms of a sudden variation of force applied to .

the system, or by displacement, velocity, or accele-
ration shock pulses imposed upon a.particular. point
or points in the system. Mitigation of the effect of
shock excitation may be achieved by inserting an
isolator having appropriate stiffness and damping
characteristics between the system being protected
and the source of shock excitation.

Engineering solutions of shock isolation prob- N

lems involve four basic tasks:
[] Definition of shock excitation characteristies
[ Specification of isolation system performance
characteristics
[ Analytical design of shock isolators
[1 Hardware mechanization of analytical design
The first task is concerned with analyzing the dy-
namic environment to arrive at a definition of shock
excitation characteristics. This involves mathematical
modeling of the shock environment and was dis-
cussed by the author in a previously published
Sound and Vibration article.! The second task in-
volves determining the required performance char-
acteristics of the shock isolation system which is
usually expressed in terms of an acceptable combi-
nation of maximum acceleration (or force) and
displacement response magnitudes. The isolation
system performance specification is generally based
on such considerations as equipment fragility, struc-
tural integrity, clearance availability and shock
isolator strength requirements. Analytical design of
the shock isolator to theoretically provide the re-
quired performance characteristics for the particular
shock environment is the third task involved. Finally,
the analytical design of the shock isolator must be
reduced to a hardware design; this task invelves
hardware mechanization wherein various isolator
mechanisms are examined to determine the -best one
for the particular application being pursued. The
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Nomenclature
Symbols and definitions of parameters used
in this article are presented below. Shown in
parentheses are the units of the parameters in

" terms of force (F), length (L), and time (T).

The conventional dot-notation is uséd to indi-
cate differentiation with respect to time; e.g.,
d(t) = d?a/dt®. A combination of dot-nota-
tion and a zero subscript is used to indicate
the peak magnitude of a time-derivative param-
eter; e.g.; aowxepresents the peak magnitude

" of a(t)
Isolation System Parameters
m ==rigid mass of isolated body
. (FT?/L) ;

k “== linear stiffness coefficient (F/L)

ko == initial linear stiffness {(F/L)

k;, = = final linear stifiness (F/L)

N~ == ratio of damper coupling stiffness
to load-carrying stiffness, dimen-
sionless

C == viscous damping coefficient
(FT/L)

Ce =2 (km) % = critical viscous damp-
ing coefficient (FT/L)

L = C/C ¢ = viscous damping ratio,
dimensionless

@y = (k/m)% = undamped natural
angular frequency (1/T)

fo = @g/2m == undamped natural
frequency {1/T)

To == 1/f, = undamped natural period
(T)

Bat == static deflection (L)

F(8) = undamped isolator force (F)

n == exponent value, dimensionless

€, — nonlinear stiffness coeflicient
(F/L")

€ . = quadratic stiffness coeflicient
(F/L?)

€ == cubic stiffness coef’ﬁclent {F/L?)

‘ Excntatlon Parameters

a(t)  ==displacement of foundation (L)

A, = dy/g = peak magnitude of founda-
tion acceleration, dimensionless
(&'s)

A, = d,/g = sustained magnitude of
foundation acceleration, dimension-
less (g's)
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P(t)  —=force applied to isolated mass (F)

) == peak magnitude of force excitation
(F)

P, == sustained magnitude of force ex-
citation (F)

A _== equivalent static deflection (L)

I == impulse (FT')

\£ == initial velocity (L/T)

A = final velocity (L/T)

v = velocity change (L/T)

h == free-fall height (L)

o == shock pulse time duration (T)

t, == rise time of shock excitation (T)

t == shock pulse effective time duration
(T)

Response Parameters

x(t) = absolute displacement of isolated
mass (L)

Xpax == maximum displacement magnitude
of isolated mass (L)

A(t) ==#(t)/g == acceleration of isolated
mass, dimensionless (g's)

Apex = [3(t) Jnax/E = maximum accelera-

tion magnitude of isolated mass,
dimensionless (g's)

&(¢) == x(t) — a(t) == relative displace-’
: ment across isolator(L)
Snex == maximum relative displacement
across isolator (L)
.Fp(t) = force transmitted to foundation
(F)

(F 1) maxr = maximum magnitude of force
transmitted to foundation (F)

T, (wet) = shock transfer response function,
dimensionless .

H,(wot) = shock amplification response func-
tion, dimensionless

- T, == shock transmissibility, dimension-
. Im .
H, ==shock amplification factor, dimen-
' swnless
General
t = time (T)
® == angular frequency (1/T)
f == /27 = frenquency (1/T)
e == acceleration of gravity (L/T2)
Subscripts : .
o == peak magnitude, maximum allow-

able value, or zero dampmg
op - ==optimum value

Figure 1 — Schematic dwgmms of ldeql;zed shock dsolao
tion systems for (a) shock excitation of the foundation and
(b) shock excitation of ;solated mass.

present article is concemed primarily wnth- the an-
alytical design of shock isolation systems.

Shock and vibration isolation systems can be gén-
erally categorized as being linear or nonlinear, de-
pending on ‘whether or not their dynamic response
is described by linear differential . equafions with
constant coefficients.. They can be further categorized
as active or as passive, depending on whether or not
external power is required for the isolator to pei-
form its function.? Active isolation systems are be-
yond the scope of this article and, therefore, only
passive isolation systems are considered.

-The essential features of a passive isolator are a
resilient load-supporting mechanism {stiffness) and
an energy dissipating mechanism (damping). Typi-
cal passive isolators employ metallic springs, elis-
tomers, wire mesh, wire cable; pneumatic springs,
elastomeric foams, and. combmatious of these or

.other cushioning devices.

Large-scale digital and analog computers have
found wide use in the solution of complex shock
isolation problems, where the effects of multi-degree-
of-freedom ‘motiohs and isolator nonlinearities ‘can
be accommodated. However, in the absence of the
availability of such computers or the time to' engage
in fullscale computer simulation of the problem,
much can be leamed from a-siinplified mathematical
model of the shock isolationi problem. Furthenmore,
a fundamental understanding of shock isolation is
more readily achieved by consideration of simplified
versions of the problem, With this understanding,
engineers with limited expertise can improve their
communication with dynamics specialists on com-
plex problems, and can learn to successfully apply

" commercially available products for- problems of a

less complex nature.

For the purpose of this article, the | “following
simplifying assumptions are.made. The isolation sys-
tem is considered to be comprised of a rigid mass
supported on a rigid ‘foundation by a single isolator

undergoing unidirectional dynamic motion. Sche-
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matic diagrams of idealized shock isolation systems
are illustrated in Figure 1 where: (a) the shock
excitation is represented by an acceleration d@(t)
imposed on the rigid foundation, and (b) the shock
excitation is represented by a force P(t) applied
to the rigid mass. For shock excitation of the founda-
tion, the purpose of the isolator -is to reduce the
magnitiude of acceleration %(f) transmitted to the
isolated mass whereas, for shock excitation of the
isolated mass, the purpose of the. isolator is to
reduce the magnitude of force Fr(t) transmitted to
the foundation. In the latter case, the isolated mass
always experiences greater accelerations than it
would without the shock isolator present.

Nature of Shock Environments

Shock excitation is generally described by a shock

pulse, which specifies the time-history of the accele-
ration, velocity, displacement or force excitation for
the time interval of the applied shock. Service shock
conditions may be represented by shock pulses
having complex time-histories. which are amalyzed
by numerical analysis. techniques or by mathemat-
_.ically modeling: the shock environment using rela-
tively simple analytical functions.! A. variety of
- mathematical analysis techniques exist for studying

- dynamics problems .involving complex shock ex-

_ citation; for example, a recent Sound and Vibration
article dealt with application of Fourier transforms
in the frequency analysis of mechanical shock.3 Only
idealized forms of shock excitation are considered in
this article so that attention is focused on the theo-
retical performance characteristics of isolation .sys-
tems rather than  the mathematical techniques
employed in their analysis,

Idealized forms of shock excitation are shown in
Table 1. The distinguishing. characteristics of the
various types of shock excitation include the shape
of the shock pulse, the.peak magnitude of the shock
excitation, and the shock pulse time duration. The
velocity .¢hange V .that occurs as a. result of the
shock excitation is also -presented in Table 1. for
each type of shock pulse.: .

Impulsive Shock, Shock excitation in the form of
an applied shock force, which has a high peak
magnitude and a time duration. that is short relative
to the nataral period of vibration of the system, is
usually defined as zmpulswe shock, where impulse

is given by

to
1= [ p(t)dt (1)
hd [
and the force P(t) is constant (generally zero) and
of equal values before time t=—0 and after time
¢t =1,. For an iofinitesimally short time duration £,
the impulsive shock represents an impact condition
wherein momentum transfer occurs instantaneously,
during which the mass experiences an instantaneous

Table 11— Idealized forms of shock excitation and the
velocity change V associated with each shock pulse.
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velocity change V = I/m, where m is the mass of
the body on which the impulsive force P(t) acts.

For an acceleration impulse, the velocity change
of the foundation is given by the area under the
acceleration shock pulse time-history, where the ex-
citation acceleration @(t) is constant (generally
zero) and of equal values before time t=0 and
safter time ¢t =£¢,.

Velocity Shock, If the excitation velocity under-
goes an instantaneous change, the system is sub-
jected to a velocity shock. The systemi could ex-
perience an instantaneous change from one velocity
V, to another velocity V,, as illustrated in Table 1.
Alternatively, the system could be initially at rest
(V,==0) prior to acquiring a velocity V,. Finally,
the system could be experiencing a velocty V, prior
to being brought to rest (V,==0). The velocity
change V==V, —V is the algebraic difference be-
tween the excitation velocity that exists after and
before the shock excitation has taken place.

Free Fall Impact. Impact resulting from free fall

9
£
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in the gravitational field imposes a velocity shock
on the falling object when the impact time duration
is short relative to the natural periods of vibration
of the elements comprising the object. For impact
‘with no rebound, the sheck condition is defined as
inelastic impact, and the velocity change V is equal
to the velocity of impact (2gh)%, where h is the
height of free fall and g is the acceleration of
gravity. For impact with full rebound, the ‘shock
conditioni is defined as elastic impact, and the
velocity change V equals twice the impact velocity.t
The velocity change is presented graphically in
Figure 2 as a function of height of free fall for
both elastic and inelastic impact conditions. For
many practical cases of free fall impact, the velocity
change has a value between' (2gh)% and 2(2gh)%
-because of partial rebound.

Acceleration Shock Pulses. Shock excitations for
elastic or inelastic impact conditions may be repre-
sented by ‘acceleration shock pulses having half-
sine, rectangular, triangular or versed-sine shapes.
The half-sine and rectangular pulses provide abrupt
initiation and termination of the shock excifation.
The initiation and termination of the shock excita-
tion for trangular pulses depénds on the relative
values of the rise time £, and the shock pulse time
duration #,. The versed-sine shock pulse provides a
smooth initiation and termination of the shock ex-
citation. The velocity change V for each shock
pulse is determined solely by the peak magnitude of
excitation acceleration A4, and the shock pulse time
duration f,. Mathematical expressions for these
idealized shock pulse shapes follow.

Half-Sine Pulse:

A{t) =Agsing (t/t)) (0<t <) (2)
Rectangular Pulse:
A(t) =4y (0 <t < ty) (3)
Tfriangular Pu{ses:
. 1 .
A(t) =4, (t, /to) (t/to) o<e<t,)
. : (4)
'A(t)=Ao( 1—¢/t0) ( 1—t/t, )
' (t <t<t)

where the ratio #,/t, is the fraction of the shock
" pulse devoted to the rise era. Initial peak sawtooth,

symmetrical, and terminal peak sawtooth triangular

pulses are obtained by setting £/, equal to 0, %
and 1, respectively.
Versed-Sine Pulse:

A(t) = (¥) Ag [Tcos 2m (/1)1 (0 <t < to()S)

Force Shock Pulses. Idealized force shock pulses
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Fiéure 2— Velocity change Imposed .on a freely falling
body during elastic and inelastic impact [after. Crede,
Ref. 2. '

may be represented by the halfsine, rectangular,
triangular and versed-sine pulse shapes presented in
Table 1 in terms of acceleration shock pulse excita-
tion, The force time-history P(t) is defined by the
mathematical relations for A(f) given by Eqs. (2)
to (5) in terms of the peak magnitude of excitation
force Py (replacing A,), the shock pulse time dura-
tion £y, and the shock pulse rise time ¢.
Sustained Loading. Sustained loading-exists in a
dynamic environment when a constant force is
applied to the mass and is maintained for an ex-
tended length of time, or a constant level of accel-
eration is imposed upon the foundation and is main-
tained for an extended length of time. The sustained
level of Ioading may be considered as being reached
instantaneously or over a finite time duration; where
t, represents the rise time of the leading edge of the
sustained loading time-history. o
Conditions of sustained loading are - normally
categorized as shock because of the sudden manner
in which the excitation force or acceleration changes
from a reference magpitude to its maximum sus-
tained magnitude of force P, or acceleration A,.
Examples of typical idealized sustained acceleration
time-histories are illustrated in Figure 3, where the
onset of sustained acceleration takes place in an in-
stantaneous step in Figure 3(a) add over finite
time durations. in Figure 3(b)-(d). Since the in-
stantaneous step represents the most abrupt. shock
condition, it is the type most frequently employed
in specifying the sustained loading response char-
acteristics of shock isolation systems. Mathematical
expressions for these idealized sustained acceleration
time-histories follow.
Instantaneous Step:

A(W) =4, (¢>0) ()
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Figure 3 — Sustained acceleration time-histories with
typlcal leadfng edge characteristics.
Ramp Step:
Al =A(t/1,) (0<t<y,)
A =4, (t>1) ™,

Versed-Sine - Stép:

AW = (%) A [l —cosm (t/1)] (O<t<t)
A(t) =A, (t> 1) (8)
Cycloidal Step: '

A(t) = (A,/2m) [2w(8/t,) — sin 97r(t/t,.)]
0<e<y,)
A(t) =A,

Basic Concept of Shock Isolation
Passive shock isolators are resilient elements inserted
between the source of shock excitation and the sys-
tem requiring protection. A reduction in the magni-
tude of system response .is provided because of the
ability of the isolator to store energy at the relatively
high rate -associated with the shock excitation, and
subsequently release it at a relatively low rate. Re-
lease of the. strain energy stored in the isolator
causes the isolated body to vibrate at the natural
frequency of the isolation system, until the energy
is dissipated by the isolator damping mechanism.5
The dynamic pérformance of an undamped pas-
sive shock isolation system is illustrated qualitatively
in Figure 4 for shock excitation of the foundation.
The shock excitation is-in the form.of an acceleration
“time-history @(¢)/g represented by a pulse of a
given shape having a peak magnitude of acceleration
A, and a time duration #,, The undamped natural
period 7y of the isolation system is selected to be a
relatively, high .value compared to the shock pulse
time duration #o, so that the acceleration response
A(t) =%(t)/g is represented by a low-frequency
transient vibration having a maximum magnitude of
acceleration A, that is less than the peak magni-
tude of shock excitation A;. The maximum value of
the relative displacement 8., = (x-2)p..is also
of considerable importance since it determines the

(t>1t) (9

maxitnum isolator. stress and isolation system clear-
ance requu-ements

For the case of force excitation of the isolated
mass; a passive isolator is introduced to provide a
relatively: long mnatural period 74 of the isolation
system so that the maximum magnitude of force
transmitted to the foundation (Fr)p.x is less than
the peak magnitude P, of the force time-history
P(t), which has a time duration £, The maximum
value of absolute displacement of the mass X, ..
determines the maximum isolator stress and the iso-
Iation system clearance requirements.

Even though isolation of both shock and vnbratxon
generally is accomplished by.use of low-frequency
isolation systems, an isolator that exhibits good
vibration isolation does not necessarily provide ade-
quate shock isolation. It is often necessary to employ
isolators with nonlinear. stifness characteristics to
achieve a satisfactory compromise betwéen shock
and vibration isolation requirements. Conditions of
sustained loading are of particular importance under
these circumstances because they may cause. the
isolator to bottom or operate in a nonlinear high-
stiffness region. In general, therefore, shock and
vibration isolation requirements must be considered
as joint design criteria.

Static Deflection

Selection of a high value of the isolation system
undamped natural period 14 is comparable to pro-
viding a low undamped natural frequency f, which,
in units of Hz, is defined as follows

(10)

where @g is the undamped circular natural frequency
in units of rad/sec, k is the linear stiffness of the
isolator, and m is the mass of the isolated body.
Large values of static detection 8, are associated
with low-frequency isolation systems, as indicated
by the following relation

8, = 9.8/fo? (inches) (11).

which is presented graphically in Figure 5. Further-
more, increasingly larger dynamic displacements of
the isolation system occur for a given shock excita-
tion as the natural frequency is decreased. Con-
sequently, selection of the isolation system natural
frequency is mmade by determining the best compro-
mise between the maximum acceleration (or force)
and displacement response magnitudes. Lateral sta-
bility and drift characteristics of certain types of low-
stiffness passive isolators also influence the selection
of natural frequency. '

The lowest natural frequency using off-the-shelf
commercially available shock isolators generally is
in the neighborhood of 5 Hz. Of course, given
sufficient space and appropriate means of introduc-
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Figure 4— Qualitative represontation of undamiped tola-
tion system perforniance characteristics for shock excita-
tion of the foundation, :
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Figure 5— Relationship between isolation system static
deflection and undamped natural frequency.

(a) (b)

Figure -6 — Schematic diagrams of viscous damped tsola-
tion systems with (a) directly coupled and (b) elastically
coupled damping mechanisms, :

ing adequate damping, a lower natural’ frequency

-can be .achieved by use of large metallic springs,

although the sizable static deflection and potential
lateral stability problems must be considered. Natural
frequencies as low as 0.5 Hz can be provided with
zero static deflection by use of passive pneumatic
isolators that employ an automatic height control

| (2 Yet-+ a0 (2

mechanism.? 88 These isolators may be considered
semi-dctive in. the sense that power is required to
operate a valve which functions to maintain a nom- -
inal fixed height of isolator under slow load vari-
ations; however; shock and vibration isolation are
provided essentially in accordance with the passive
stiffness characteristics of the pneumatic isolator. ,

Equations of Motion _
Differential equations of motion for the linear
single-mass isolation systems with directly coupled

and elastically coupled viscous damping shown in

Figure 6(a) and Figure 6(b), respectively, are as

- follows

¥4 2L wo &+ moz;sz P/m (12a)
N+1).
5

2 -
+ @286 = P/m -} (N_f)o) P/m
(12b)

where x is the absolute displacement of the isolated
mass, §== (x-¢) is the relative displacement across
the isolator, and ‘the shock excitation is assumed to
be specified by the force P, the foundation displace-
ment @, or time-derivatives of a. The viscous damp-
ing ratio { == C/Cg is the ratio of the viscous damp-
ing coefficient C to the critical value of viscous
damping C; = 2 (k m)% for N = w, and the stiff-
ness ratio N is the ratio of the damper elastic
coupling stiffness to the main load-carrying stiffness.
The directly coupled viscous damped system shown
in Figure 6(a) is the mathematical model tradi-
tionally used by vibration engineers to study the
effects of damping; however, the elastically coupled
viscous damped system, or variations thereof, shown -
in Figure 6(b) has been demonstrated to be a
mathematical model that more accurately portrays
the dynamic characteristics of linear shock and
vibration'isolation systems.? The system with directly
coupled damping is observed to be a degenerate
case of the system with elastically coupled damping
wherein the stiffness ratio N equals infinity.

Dimensionless Response Parameters

The maximum magnitide of isolation system re-
sponse parameters, such as A_,, and §,,, for shock
excitation .of the foundation and (Fg) .. and Xpax
for shock excitation of the isolated mass, are gen-
erally of primary interest, However, it frequently is
convenient to present the performance characteristics
of shock isolation systems in terms of .two dimension-
less response parameters — the shock transmissibility
T, and the shock amplification factor H,.

Shock Pulse Excitation. For shock excitation of the
foundation, the shock transmissibility T, and the
shiock amplification factor H, are defined as follows

SOUND AND VIBRATION -«
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Anax
T,= == 13
™ (13)
’ smlx
H = 2= 14
where the equivalent static deflection A, is given by
A = Aog/wo? (15)

The corresponding definitions for shock force excita-
. tion of the isolated mass are as follows

— (Fr)m-x
T,= “—‘—‘Po (16)
Xmll’
H. = Alt (17)
Ay =Po/k (18)

where the force transmitted to the foundation is
given by Fp = CX 4 kX' for directly coupled
viscous damping and by Fr 4 (Nk/C)Fp = k(N
+ 1)X 4 (Nk2/C)X for elastically coupled viscous
damping: The equivalent static deflection A, is that
deflection which would résult if the peak magnitude
of shock excitation (Ag or P,) were. applied statically
to the isolated mass.

Sustained Loading. For sustained acceleration of
the foundation, the shock transmissibility T, and the
shock amplification factor H, are defined as follows

A '
T, = Amx 19
. A, (19)
- ,Sml!
| H, =g (20)
where
A= A8/ 62 (21)

The corresponding definitions for a sustained force
applied to the isolated mass are as follows

(Fr) max _
T, == LP.—-— (22)
Xinax
H, == A (23)
at == Pu/k (24)

The equxvalent static deﬂection Ay is that defiection
which would result-if the sustained magnitude of
shock excitation (4, or P,) were applied statically
to the isolated mass.
" Linear Isolation Systems. Certain equalities exist
among the dimensionless response parameters for
linear -isolation systems. For shock pulse excitation,
the shock transmissibility expression given by Eq.
(13) also represents the ratio of appropriate re-
sponse and excitation parameters for velocity or dis-

placement shock excitation of the foundation. Fur-
thermore, the shock transmissibility expressions given
by Egs. (13) and (18) are equal, as are the shock
amplification factor expressions given by Eqs. (14)
and (17), as follows

— Amex __ anx _Xmlx e (FT)mux
= g T = T Do (a3)
B S .
= Az = Bofk (26)

where 6, and @, are the peak magnitudes of velocity
and displacement shotk “pulses, respectively.

For sustained loading conditions, the shock traris-
missibility expression given by Eq. (19) also repre-
sents the ratio -of appropriate response and excita-
tion parameters for sustained velocity ‘or- displace-
ment of the foundation. Also, the shock trensmissi-

" bility expressions given by Eqs. (19) and (22) are

equal, as are the shock amplification factor expres-
sions given by Egs. (20) and (23), as follows ;e

Amx — Xmax — XnnxA — (FT)mn:
Ac dn - a, o P,
8llllx Xmlx

Aglog® Pk P,/k

where 4, and @, ar¢ the values of sustained velocxty
and displacement imposed on the foundation, re-
spectively.

Effect of Damping. For zexo dampmg, ‘the. shock
transmissibility T, and the shock amplification factor
H, are equal since X,.c = gAnax = —0¢? Spax and
(F,-)m“ == kX q« for shock excitation of the founda-
tion and of the isolated mass, respectively. Hence,
for linear shock isolation systems with zero damping,
the following relationship applies

in the presence of damping, the maximum accelera-
tion response Ag,, is not directly proporhona} to the
maximum relative displacement response 8., and
(F 1) max is mot directly proportional to Xp,,. There-
fore, the shock transmissibility in general does not
equal the shock amplification factor'® although, for
small directly coupled damping ({ < 0.2), the rela-
tionship of Eq. (29) is approximately true. This fact
is clearly demonstrated later in the article by the
design graphs for T, and H, that are provided for a
wide range of values of viscous damping ratio {.
Erroneous information on the effect of dimping
has appeared in the technical literature due to im-
proper adaptation of amplification factor data pre-
sented by Mindlin and his co-workers 1112 for half-
sine acceleration pulse shock excitation. When the
amplification factor data are reproduced and re-
labeled as shock transmissibility’® or dynamic load
factor,** Eq. (29) has been tacitly assumeéd to apply
and, for values of damping. other than zero, the

T,== (27)

H,— (28)

(29)

A
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results are incomrect. Similar erroneous results are

‘obtained when using the generalized excitation and

response ‘notation employed by Ayre.!s However,
Marous and Schell’6. 17 have made proper distinction
between' the generalized response parameters for
uridamped and damped systems. o
Extensive analytical results showing the effect of
viscous damping on the shock response for accelera-
tion pulse shock excitation has been given by Lukel®
for directly coupled damping and by Derby and
Calcaterra®® for elastically coupled damping. Similar
information for displacement pulse shock excitation
has been given by Snowdon.2® The effect of non-
linear damping on the shock response of isolation
systems is a considerably more complex problem, for
which general analytical methods,2! graphical tech-
niques, 1% 22.23 and results presented in. the form of
shock spectra?t are available. )

Velocity Shock Isolation With Zero Damping

In the absence of damping, an instantaneous
velocity change V gives rise to acceleration, force
and displacement responses that are sinusoidal time-
histories, as shown in Figure 7(a). The maximum
response magnitudes are given by

(Fr)max Vo o .
Does_ YO0 —9mig¥/g (30)

8mnx or Xmux = V/wo = V/27Tfo (31)

A g Or

Values of A,,, and 8, are presented in Figure 8
for a wide range of values of ‘velocity change V
(in/sec) and natural frequency f,(Hz). For a given
value of V, this graph provides a means of selecting
the isolation system natural frequency to -achieve a
satisfactory compromise between the maximum ac-
celeration and relative displacement response magni-
tudes. For velocity shock (force impulseé) excitation
of the isolated mass, the parameters A,.c and 8ax
determined from Figure 8 represent (Fg),../mg
and X,,,,, respectively.

Velocity Shock lIsolation
With Viscous Damping

The presence of damping can matérially affect
isolation system response characteristics, The addi-
tion of a small amount of viscous damping will re-
duce the acceleration or force response; however, an
excessive degree of damping can cause the accelera-
tion ‘or force response to be increased over that
which exists for zero damping. Values of optimum
damping for minimax response (minimized maximum
response magnitudes) can be determined for various
optimum performance criteria to form the basis for
establishing preferred ranges of isolator damping.

Directly Coupled Damping. For an isolation sys-
tem with directly coupled viscous damping, as shown
in Figure 6(a), the acceleration, force and displace-
ment responses are exponentially decaying sinusoidal
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‘Figure 7 — Response -time-histories for velocity shock
excitation of (a) undamped and (b) directly coupled.
viscous damped isolation systems.
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Figure 8 — Undamped isolation system response maxima
for velocity shock excitation of the foundation. For veloc-
ity shock excitation of the isolated mass, Awes and Bumes
represent (Fr)nae/mg and Xuee, respectively.

time-histories, as’ illustrated in Figure 7(b). Upon
application of the velocity shock at time ¢ = 0, the
acceleration A (or force Fy) instantaneously acquires
magnitude given by :

A(o) or’%f.é’—é 2 Ver/e (32)

whereas the displacement 8 (or X) initially has a
zero magnitude as in the case of zero damping. Since
the value: of response acceleration A(o) given by
Eq. (32) is acquired instantaneously, the initial
value of the jerk of the isolated mass X (o) is infinite.
For [ < 0.5, the initial acceleration or force response
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Figure 9 — Acceleration or force and displacement re-
sponse maxima for isolation system with directly coupled

viscous damping subjected to velocity shock excitation’

[after Mindlin, Ref. 11],

is less than the maximum value ultimately achieved
wheieas, for ¢ > 0.5, the initial value of accelera-
tion or force response is the maximum magnitude
attained, and the magnitude of response decreases
thereafter.1t C

Variation ‘of the maximum magnitudes of acceler-
ation, force and displacemént, normalized with re-
spect to the magnitudes that exist for zero damping,
are presented graphically in Figure 9 as a function
of the viscous damping ratio . For values of viscous
dampirig in the range 0 < { < 0.5, the maximum
acceleration or force response is below that which
exists for zero damiping whereas, for { > 0.5 the
maximum response is greater and increases in direct
proportion to {, For all values of the viscous damp-
ing ratio, the maximum displacement response
magnitudes are decreased below those that exist for
zero damping. . .

The dimensionless acceleration or force response
parameters are miniinized when the viscous damping
ratio has the value { = 0.26. For a specified value of
natural frequency wo (based, for example, on static
deflection considerations) and an optimum value’ of
viscous damping ratio {,, = 0.26, the maximum
acceleration or force response magnitude is reduced
19 percent below the corresponding value for zero
damping, as follows.

(Auuelepor [ FDmmx]
(L., ==0.26) (33)

and the resulting maximum displacement response
magnitude is

Bax OF Xnax = 0.7V/ o (34)

== 0.81Vwo/ 8
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Figure 10 — Regions of underdamping and odérdanipu‘ng

for an isolation system with elastically coupled viscous
damping [after Derby and Calcaterra,, Ref. 19].

which represents a 30 percent reduction bélow that
which exists for zero damping. '

A more general optimum performance criterion
involves determination of the amount of damping
and the value of natural frequency that minimizes
the maximum acceleration or force response magni-
tudes for a specified maximum magnitude of dis-
placement response.!? In this case, an optimum value
of viscous damping ratio {,, = 0.4 and an optimum
natural frequency given by

(00) op = 0.6V/Brngs (35)

result in minimizing the maximum acceleration or
force magnitude, as follows:

( FT ) max ] _ 0.52V* 0.52v?
(AmQX)OD o mg op o gsml.x or gxmax

(L; =04) (36)

An alternative statement of this optimum perfor-
mance criterion is that, for a selected maximum mag-
nitude of acceleration response A,z (or force re-
sponse (Fr)umax), the resulting maximum magnitude
of displacement response 8,45 (0r Xyax) is minimized
when { == 0.4 and the natural frequéncy w, is de-
termined according to Eq. (35). Comparison of this

optimum damped system with the “best possible”,

or “ideal” theoretical solution, which involves the
use of a constant-force energy dissipating device
(e.g., dry-friction damper or a crushable material),
indicates that, for a specified velocity change and
maximum displacement response, the maximum ac-
celeration response is only 4 percent higher than
that for the “best possible” shock isolation system.!?
However, a passive constant-force device may not
Teturn to its initial position subsequent to the shock
excitation, whereas an isolator comprised of a spring
and an optimum viscous damper does. ‘

" For those cases where high-frequency vibration
isolation is an important design criterion, a valie of
{ == 0.4 may be too high because of excessive de-
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Figure 13 — Optimum viscous damping ratio for an iso-
Iation system with elastically coupled viscous damping
and a specified value of natural frequency v, [after Derby

and Calcaterra, Ref, 19],

gradation -of vibration isolation’ at high frequenciés.
Also, "the static deflection associated with the opti-
mum natural frequency (w,),, may be greater than
desired. Consequently, for most practical problems,
a value of viscous damping ratio should be selected
in the range 0.1 < { < 0.4 for velocity shock excita-
Hon of an isolation system with directly coupled
viscous damping, .

Elastically Coupled Dampirig. For an isolation sys-

tem with elastically coupled viscous damping, as’

shown in Figure 6(b), the acceleration, force and
displacement responses are represented by complex
solutions of a third-order differential equation and
generally appear to be exponentially decaying har-
monic time-histories. Due to the presence of the
damper elastic coupling stiffness NK, both the accel-
eration A (or force Fy) and displacement § (or X)
initially have zero magnitudes upon application of
the velocity shock at time ¢ — 0. Hence, the’ initial
jerk of the isolated mass X (o) is finite as it is for zero
damping. . : : .

For values of the stiffness ratio N < 8, the isola-
tion system is underdamped for all values of damp-

ing; that is, the response motion-is oscillatory. For:

values of N > 8, there are two values of the viscous
damping ratio { for- which the system is critically
damped, and the system is overdamped (non-oscilla-
tory response motion) for damping between these
two values.1® The regions of underdamping and over-
damping for a wide range of values of the viscous
damping ratio { and the stiffness ratio N are illus-
trated in Figure 10. For values of { < 0.77, the
isolation . system with elastically coupled viscous
damping is always underdamped and experiences

oscillatory response motions. :

Variation of the maximum magnitudes of accelér-

ation, force and displacement, normalized with re-
spect to the magnitudes that exist for zero damping,

- are presented in Figures 11 and 12 as a function of

the viscous damping ratio { and the stiffness ratio N.
Referring to Figure 11, for sufficiently low values of
damping the maximum acceleration or force re-
sponse magnitude can be reduced below that which’
exists for zero damping whereas, for { > 0.5, the

maximum response is always greater, and the dimen- .

sionless acceleration or force response parameter
approaches (N -}- 1)% as the viscous damping ratio
approaches infinity. For all values of the viscous
damping ratio, the maximuin displacement response
magnitude is decreased below that which exists for
zero damping, as shown in Figure 12, and the
dimeénsionless displaceient response parameter ap-
proaches 1/(N 4~ 1)% as the viscous damping ratio
approaches infinity. ' .

For specified values of natural frequency w,, there

is an optimum value of damping {,, that minimizes -

the maximum acceleration .or force response magni:
tude, as shown graphically in'Fignire 13 as a function
of the stiffness ratio N. For this. optimum perfor-
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Figure 14— Generalized accelerationi or force and dis-
placement response maxima for an isolation system with
elastically coupled viscous damping subjected to velocity
shock excitation [after Derby and Calcaterra, Ref. 19].

mance criterion, the optimum viscous damping ratio
has a value in the range 0 < [ < 026, where
Lop = 0.26 applies for N = w0 corresponding to the
directly coupled viscous damping mechanism.

The more general optimum performance criterion,
which involves determination of the amount of
damping and the value of the natural frequency
that minimizes the maximuin acceleration or force
magnitudes for a specified. maximum magnitude of
displacement response, cannot be solved analytically

in closed form. However, numerical search tech-

niques can be employed to determine the influence

‘of the three design parameters {, @y and N on the

optimum response for velocity shock excitation.}? By
eliminating the natural frequency @, from the search
procedure, graphical design data for the parameter
Anax Onnxl/V2 or (Fy)umaxXimee/mV2 can be devel-
oped, as shown in Figure 14. This design graph
essentially represents the product of the abscissa
quantities of Figures 11 and 12, which excludes the
effect of the natural frequency @, Having arrived
at an acceptable combination of maximum accelera-
tion or force-and displacement response magnitudes
from Figure 14 by selecting appropriate values of
the viscous damping ratio { and the stiffness ratic N,
the required natural frequency can be determined

" from Figures 11 or 12 in terms of the parameters

Apax OF (Fz)may and 84z or Xy, 4, respectively.
Values of the optimum viscous damping ratio {,,
that comrespond to the minimum values of the re-
sponse curves presented in Figure 14 are shown as
a function of the stiffness ratio N in Figure 15. The
parameter {,, has a value in the.range 0 < { < 0.4,
where [, = 0.4 applies for N = o corresponding
to the directly coupled viscous damping mechanism,
The optimum natural frequency (@), that is asso-
ciated with each value of {,, may be determined
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Figure 15 — Optimum viscous damping ratio for an iso-

. lation system with elastically coupled viscous damping

having a minimax response corresponding to the mini-
mum of the generalized response maxima curves pre-
sented in Fig. 14 [after Derby and Calcaterra, Ref. 19].
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Figure 16 — Frequency parameter providing the oalue
of the optimum natural frequency (w.)., for an isolation
system with elastically - coupled viscous damping and a
value of optimum viscous damping ratio specified in Fig.
I5 [after Derby and Calcaterra, Ref. 19].

from the optimum frequency parameter, which is
presented graphically in Figure 16 as a function of
the stiflness ratio N, and the maximum displacement
response magnitude 8,0 oF Xgax- =
When: combined with previously published dat
for optimization of damping for harmonic vibration
excitation?: 25 the response data presented for veloc-
ity. shock excitation provides the basis for selecting
design parameters to achieve satisfactory isolation
characteristics for both shock and vibration excitation.

The response characteristics for shock pulse excita-
tion and sustained loading, and the effect of isolator
nonlinear stiffness characteristics, are discussed in the
second part of the article to be published in the
September 1970 issue of Sound and Vibration. A
complete list of references will accompany the con-
cluding part of the article. ‘
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‘Passive Shock Isolation

A discussion of the nature of shock environments,
the basic concept.of sheck isolation, equations of
motion, and dimensionless response parameters were
discussed in the first part of the article published in
the August 1970 issue of Sound arid Vibration. Isola-
tion system performance characteristics for velocity
shock excitation were also presented, including the
effect of directly coupled and elastically coupled
viscous damping.

The second part of the article is concemed with
the response characteristics for shock pulse excitation
and sustained loading, incdluding the effect of viscous
damping, The article concludes with a discussion of
the effect of isolator nonlinear stiffness characteristics
and a listing of references for both Parts 1 and IL

Response for Shock Pulse Excitation

The first complete discussion of the response of a -

simple mechanical system -to shock pulse excitation
was presented in Mindlin’s monograph on package
. cushioning.!? This work was later extended by Jacob-
sen and Ayre?® to include a wider varety of shock
.pulse shapes. Collections of data on the shock re-
sponse of linear single-degree-of-freedom systems for
a wide range of pulse shapes are available in the
technical literature, including the effects of viscous
damping?0-20.22.26.27 although one must be cautious
of shock transmissibility -data that has been derived
from. shock amplification factor data when damping
dis present, as previously discussed in this article. -
The Shock Spectrum Concept. In evaluating the
effect of shock pulse shape on the dynamic response
of linear isolation systems, the shock spectrum con-

-cept_ is usually employed.'% 28 Basically, a shock

spectrum is .a description .of the manner in which
the response’ maxima of .single-degree-of-freedom
- systems vary with natural frequency and damping
for a given shock excitation. The 'mpst - common
means of graphically presenting shock spectra is the
“four-coordinate, logarithmic graph paper illustrated
in Figure 17. For shock excitation of the foundation,

the values of acceleration .and . displacement. pro-

vided by Figure 17 comrespond. to Ap.. and §y,,,
respectively, whereas, for shock excitation of the
isolated mass, .the acceleration and displacement

values correspond to (Fy)mao/mg and me respec- |

tively,

Complex shock excitations are analyzed by analog
or digital computation means to obtain a plot of the
shock spectrum. For a given allowable maximum
acceleration or force, the required isolation’ system
natural fréquency and the resulting maximum rela-
tive displacement is obtained directly from the shock
spectrum curve. An optimum design can be attained
by selecting various values of natural frequency
until the best compromise .between the maximum
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Figure 17— Four-coordinate logarithmic shock spectrum

- presentation, with examples of spectra for two shock

pulses.

" response’ magmtudes of acceleratxon or force and
" displacement is obtained,

Two examples of shock spectra are included in
Figure 17 for particular values of damping, For
Spectrum No. 1, considering the maximum  allow-
able acceleration response to be 10 g's indicates that
a 6 Hz isolation system natural frequency is required,
for which the dynamic displacement &, is 2.7
inches and the static deflection §,, is 0.3 inches.
However, if the maximum allowable acceleration is
iriereased to 20 g's, a 10 Hz natural frequency can
be employed, for which 8., = 2 inches and §,,

- = 0.1 inches. Finally, no isolation is needed if the

maximam allowable - accelerahon is increased to
60 g’s.

The valleys in Spectrum No 2 provide potenhal
optimum, solutions to the shock jsolation problem.
A 7 Hz natural frequency will reduce the transmitted
acceleration to 2.3 g’s, with a dynamic displacement
of 0.45 inches and a static deflection of 0.2 inches.
However, by allowing 5 g’s acceleration to be
transmitted, a 30 Hz ‘natural frequency system can
be employed which reduces the dynamic displace-
ment and the static deflection to 0.05 inches and
0.01 inches, respectively. Such “tailored” optimum
solutions, of course, require that the nature of the
shock excitation does not-materially change from
one, shock occurrence to the next.

Response Characteristics. for Zero Damping., The
technical literature contains considerable information

‘oni the undainped shock spectra for analytically:’ de—

fined pulsés, iricluding rectangular, half-sine; verséd-
sine and triangular shapes. For positive valde shock
pulses (d, P > 0) having a single peak of magnitude

12
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Agor Py, a relatively. simple design criteria for shock

" isolation with zero damping can be established by

defining the shock pulse effective time duration ¢,
as follows;13

ty == v or v
T A Py/m

For a rectangular pulse, the effective time duration
t, equals the actual pulse duration #,; however, for
all other pulse shapes, the effective time duration
is less than the actual pulse time dutation. For ex-
ample, £, = (2/w)t, for the half-sine pulse, and
t, = t,/2 for the versed-sine and triangular pulses.
A qualitative graphical presentation of shock trans-
missibility for an undamped linear isolation system
is presented in Figure 18. The shock transmissibility
curves indicate that amplification of shock occurs
for high values of the shock pulse effective time
duration, and isolation of shock occurs for effective
time durations ¢, less than approximately one-sixth
the fsolation-system natural period 7. The shape of
the shock pulse is unimportant in the shock isolation
region and, for all practical purposes, velocity shock
conditions apply to the entire isolation region. There-
fore, in order to provide isolation of shock, the
natural frequency is selected so that fo < 1/6£,. The
shock transmissibility curve presented in Figure 18
is analogous to the transmissibility curve for an un-
damped linear isolation system subjected to harmonic
vibration excitation, as shown in Figure 19, which
indicates that amplification of vibration occurs for
low values of excitation frequency and isolation of
vibration occurs for excitation frequencies greater
than (2)% times the isolation system natural fre-
quency fo. In order to provide isolation of vibration,
the natural frequency of the isolation system f, is
made less than 0.7 times the excitation frequency.
The isolation system response depends solely on

(37)

the velocity change for low values of ¢,, on the shock -

pulse shape and its peak magnitude for intermeédiate
value of ¢t,, and solely on the peak magnitude of the
shock pulse for high values of #,. The shock trans-
missibility ‘is directly proportional to the ratio ¢./7,
for t, < 7o/6. In the range 74/6 < £, < 1.5 7o, the
shock transmissibility generally has a value between
L2 and 2, depending on the shape of the shock

. pulse. For shock pulses having a leading edge with
a gradual rise, the maximum shock transmissibility
occurs in the region 70/3 < &, < 2 74/3 and, for ¢,
> 1.5 74, the shock transmissibility ranges between
1.0 and 1.2 regardless of the shape of the excitation
shock pulse. For shock pulses having a vertical lead-
ing edge, the maximum shock transmissibility gen-
erally approaches a maximum value of 2 for values
of t, ..>— K o/ 2.

Values of shock transmissibility T, and shock
amplification, factor H, for zero damping are pre-
sented in Figure 20 in terms of the relative values
of the actual shack pulse time duration ¢, and the

isolatioti system natural period 7, for rectangular, °
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half-sine, versed-sine and triangular shock pulses.
Velocity shock conditions prevail, with less than
. approximately ten percent overestimate in response
prediction, when & < 7o/4 for a rectangular pulse
and ¢, < 7¢/3 for half-sine, versed-sine and tri-
angular pulses. For these conditions, relatively sim-
ple. expressions for shock transmissibility and shock
amplification factor exist, as summarized in Table 2,
Effect of Damping. The effect of directly. coupled
viscous damiping on the shock transmissibility T, and
the shock amplification factor H, for rectangular,
half-sine, versed-sine and Inangular (initial peak saw-
tooth, symmetrical, and terminal peak sawtooth)
shock pulses is shown in Figure 21.18 These curves
provide values of T, and H, defined by Egs. (25)
and (26) as a functxon of the ratio of shock pulse
- time duration £, to the isolation system natural peried
T, for various values of the viscous damping ratio .
The curves for { = 0 and { = 0.01 are the same to
within approximately a two percent emor. For
{ < 05 and ty/7y < 1/4, or any value of { and
to/70 > 1/4, damping has the ‘general effect of re-
ducing both the shock transmissibility and the shock
‘amplification factor. For { > 0.5 and ty/75 < 1/4,
the shock transmissibility is greater than that for
zero damping while a further decrease in the
value of the shock amplification factor results. The
isolator essentially acts as a rigid connection between
the mass and the foundation for extremely high
values of damping, thereby causing the shock trans-
missibility to approach unity and the shock amplifi-
cation factor to approach zero for all values of the
ratio £o/7,-
_ Shock response curves similar to those presented
in Figure' 21 have been. developed for elastically
coupled viscous damping.!® The effect of nonlinear
damping on the shock response of isolation systems is
a considerably more complex problem, for which gen-

eral analytical methods,?! graphical techniques?5:22.23 -
and results presented in the form of shock spectra?t:

are- ava.llable

Response for Sustained Loading

For conditions of sustained acceleration or force,
the isolation system response is a function’ of the
" leading edge characteristics of the. sustained loading
time-history and the isolation system natural period
7o. Values of shock transmissibility T, or shock
amplification factor H, for zero dampmg are pre-
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Figure 22 — Shock transmissibility and shock amplifica-
tion factor for an undamped isolation system subjected to
sustained loading with various leading edge character
istics [after Jacobsen and Agyre, Ref. 22 and 26].

sented in Figure 22 for ramp, versed-sine and

cycloidal step functions in terms of the ratio of the

step function rise time ¢, to the natural period of

the isolation system 7.15.22,26

For an instantaneous step (/7o = 0), T, and H,
have a value of 2.0, indicating that the response
maxima are twice the magnitudes that would result
if the sustained loading were applied statically to
the mass. For non-zero values of the time ratio t,/7,,
the shock transmissibility or shock amplification fac-
tor always have a value less than 2.0. The shape of
the leading edge characteristic determines the degree
of shock transmission, with no amplification (zero

~overshoot) resulting for certain values of ¢./7y for

which T, and .H, have values of unity; for example,
this is the-case when t,/70 = 1, 2,-3, etc,, for the

-ramp step function, when t,/7, = 1.5, 2.5, 3.5, etc.,

for the versed-sine step function, and when ¢,/7, ==

-2, 3, 4, etc., for the cycloidal step function. The low-.
est value of-shock transmission is provided by the
ramp step function for low values of the time ratio .

t./To.
Effect of Damping. Dimensionless tlme-hlstones of
the shock transfer response T,(awgt) and the shock

" amplification response .H,{wqt). for sustained accel-

eration of the fpundat:on may be defined as follows
To(wot) = A(wot) /A, = % (eot) /8, (38)

H, (wot) = 8(wot) 07 A,g = é(woc)m:/fi.
- (39)

Table 2 — Approxumafe shock trammcssibilzty and shock ampllﬁcatwn factor equations for acceleration shock pulse

excitation. of the foundation.

Pulse Shape Velocity Change Shock Response Region of Vahdlty
(acceleration) (v} (T.or H,)
Half-Sine (2g/7) Ao 4(to/70) /70 <0.33
Rectangular gAdo 27 (#s/7q) to/ 1o <0.25
Triangular (/2) Aty w(to/ 7o) /7, <0.33
<" Versed-Sine- (g/2) Ads - w(tu/7e)

/<033 -
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where Egs. (27) and (28) can be employed to de-
fine similar expressions for sustained velocity and
displacement of the foundation or for a’sustained
force applied to the isolated mass. Graphical pre-
sentations ‘of these shock response time-histories for

an isolation system with directly coupled viscous”

damping subjected to an instantaneous step sus-
tained loading are shown in Figure 23. Isolation sys-
tem damping is -observed to décrease the response
maxima of the isolation system below the values that
exist for zero damping, and provide a faster decay
of the transient vibration response. The undamped
shock response is represented by a versed-sine time-
history whereas, for values of damping in the range
0 < ¢ < 1, the shock response decays exponen-
tially to its steady-state value after reaching its
maximum magnitude. .

The shock transiifissibility T, and the shock ampli-
fication factor H, for an instantaneous step sustained
loading, as defined by Egs. (27) and (28), are pre-
sented in -Figure 24 for directly coupled viscous
damping, For { < 0.2, T, and H, are very nearly
equal. In general, however, the shock transmissi-
bility is greater than the 'shock amplification factor
for a given amount of damping, thereby indicating
that directly coupled viscous ddmping is more effec-
tive in reducing the maximum dynamic displace-
ment than in reducing the maximum transmitted
acceleration or force.

Isolator Nonlinear Stiffness Characteristics

Varjous types of isolator nonlinear stiffness charac-
teristics may be employed to achieve a compromise
between the transmitted acceleration or force and
the resulting displacement that is more acceptable
than the combination provided by a linear isolator.
Typical stiffiness characteristics of passive isolators
are illustrated in Figure 25 in the form of static
force-deflection curves. The stiffness coefficient k-for
a linear isolator is k — F/§ whereas, for nonlinear
" isolators, the stiffness is given by k == dF/d8, which
corresponds to the slope of the force-deflection eurve
at a specified equilibrium position,

The “ideal” stiffness characteristic for shock is one
having a constant force for all deflections greater
than zero, the magnitude of which js equal to the
allowable value of Mm%,y or (Fg)uae This isolator
stiffness characteristic provides maximum storage of
energy for a given deflection and, therefore, provides
shock isolation with minimum isolator displacement.
The ideal shock isolator, however, provides no vibra-
- ton isolation unless the break-loose force is exceeded,
and it generally requires an external force to return
the system to the static equilibrium position.

The “ideal” stiffness characteristic for vibration is
one having a constant force magnitude ‘(e. g., zero
value) for all allowable deflections. This is achieved
conceptually by employing an isolator mechanism
having a zero stiffness or zero rate of change of
force with deflection at the static equilibrium posi-

SHOCK TRANSFER RESPONSE, Ty(w,t)

SHOEK AMPLIFICATION RESPONSE,H,(w,t)

DIMENSIONLESS TIME, uyt

Figure 23 — Shock transfer response and shock amplifica-
tion response time-histories for an’isolation system with
directly coupled viscous damping subjected to instan-
taneous step sustained loading.
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Figure 24 — Shock transmissibility and shock amplifica-

tion factor for an isolation system with directly coupled

Z’is:}ous damping subjected to instantaneous step sustained
ading. :

tion. The natural frequency is zero, thereby provid-
ing infinite isolation of vibration as long as- the dis-
plicement is less than the available excursion beyond
which the stiffness substantially increases. The ideal
vibration isolator, however, provides no shock isola-
tion since it is incapable of storing potential energy.
High levels of shock amplification would result be-
cause of the high stiffness encountered when the
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maximum available deflection is reached.
Isolator stiffness characteristics ranging between
the “ideal” characteristics for shock and vibration

- include those identified as linear, hardening, soften-.

ing, buckling; and bilinear. The performance of linear
isolation systems has been previously discussed. If
relative displacement is the most important response
parameter, isolators with hardening stiffness charac-

teristics may be employed whereas, if acceleration or )

force is the most important response parameter, iso-
lators with a softening stiffness characteristic may be
selected. Considering elastomeric stiffness elemenits

as an example, the stiffness under pure shear tends

to be linear for relatively large strains, whereas the
stiffness for pure compression and tension exhibits
hardening and softening characteristics, respectively.
Bilinear stiffness isolators may be hardening or soft-
ening, depending upon the relative values of the two
linear stiffnesses that characterize the isolator. A
hardening bilinear stiffness characteristic is useful
for determining the effects of “isolator snubbing or
abrupt bottoming and is frequently employed to pro-
vide a low initial stiffness for vibration isolation and
a relatively high fina! stiffness to limit the dynamic
defleetions under shock excitation.?? An elastic-plastic
bilinear stiffness characteristic in the form of an

initial linear stiffness followed by a zero stiffness -

may be used to study a “yielding” isolator that has

been deflected into its plastic region. Finally, a

buckling stiffness characteristic may be used to de-
rive the benefits of both a hardening and a softening
stiffness characteristic at appropriate positions in the

isolator deflection range. This type of stiffness char-

acteristic is exhibited by ‘certain cushioning mate-
rials, such ‘as elastimeric foam,3%. 31 and by specially
designed elastomeric isolators.2? 82 .

A comparison of dynamic response tme-histories
. for an undamped shock isolation system is presented
in' Figure 26 for hardening, linear, and softening
isolator stiffriess characteristics, where the accelera-
tion #(t), velocity #(¢) and relative displacement
&(¢t) are shown for velocity shock excitation of the
foundation with the system initially at rest. It is
assumed that the isolator force is an odd function of
isolator deflection; that is, F(§) = —F (—8) with
the origin at the static equilibdum position,

The . acceleration and relative displacement time-
histories for a linear stiffiess isolator are sinusoidal,
with maximum magnitudes given by Egs. (30) and
(31), respectively; the isolated mass acquires a
velocity equal in value to the velocity change V after
a period of time equal to 71/w,, when the magni-

“tudes of acceleration and relative displadement re-
sponse are zero. For the hardening stiffness charac-
teristic, a greater magnitude of acceleration is trans-

mitted with less relative displacement than that for .

the linear system; the isolated mass acquires a veloc-
ity equal'in value to the velocity change in a shorter
period of time; and, the response curves exhibit a
“spike” and indicate a shorter natural period of

| “IDEAL" FOR suock—\

4
 HARDENING

FORCE, F

~ “IDEAL" FOR VIBRATION—y J

DEFLECTION, 8

eflection curves iMMﬂg oarious
tsolator nonlinear stiffness characteristics.

Figure 25— Force-d

ACCELERATION, ¥
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2w,

OISPLACEMENT, ¥4

Figure 26 — Response time-histories for velocity shock
excitation of undamped isolation systems with hardening,
linear, and softening isolator stiffness characteristics.

vibration. For the softening stiffness characteristic, a-
lower magnitude ‘of acceleration is transmitted with
a relative displacement greater than that for a linear
system; the isolated ‘mass is slower to acquire a
velocity equal in value to the velocity change, and
the “flattened” response curves indicate an increased
natural period of vibration.

The use of nonlinear stiffness characteristics pro-
vides considerable flexibility in tailoring isolator

SOUND AND VIBRATION «

17




designs for specific engineering applications. Basic

techniques for analyzing and designing nonlinear

* shock isolators are available in the technical litera- )
ture, % 11,12, 2035 jncluding the effects -of isolator

damping.33. 36-3% More advanced analysis and auto-
mated design procedures have been developed with
regard to the problem of mitigating: the effects of
air, ground and underwater blast shock. 4042
Velocity Shock Isolation With Zero Damping, A
relatively simple method exists for determining the

response of an undamped isolation system with iso-

lators having nonlinear stiffness characteristics sub-
jected to velocity shock excitation. The area under
the isolator force-deflection curve represents the po-
tential energy stored by the isolator. Since there is
no energy dissipation through damping, the maxi-
mum potential energy stored by the isolator for
displacements beyond the static equilibrium posi-
tion equals the maximum kinetic energy associated
with the velocity shock condition, as follows

)
mv¥/2= [ F(5)ds (40)
(]

where the isolator nonlinear force F(3) is related to
the response acceleration or force transmitted to the
foundation, as follows:

F(8) = m% = mgA —Fy (41)

Selection of an idealized mathematical force-deflec-
tion relation to represent the nonlinear stiffness char-
acteristic- of a shock isolator is based either on an
analysis of the isolator stiffness mechanism or on
experimental force-deflection data. Solution of Egs.
. (40) and (41) for a specified isolator force-deflection
relation results in the determination of response
maxima in terms of the velocity change V and
parameters that define the nonlinear characteristics
of the isolator stiffness.

Using this analytical approach, design data for
undamped isolation systems are determined in terms
of dimensionless excitation and response parameters
for a variety of isolator stiffness nonlinearities; Shock
excitation is expressed in terms of the ratio of
velocity change V to a suitable reference velocity.
Shock: response is expressed in terms of the ratio of
acceleration or force and displacement response
.maxima to suitable reference values that are related
either to the response characteristics for a linear
isolator or to parameters characteristic of the non-
linear isolator stiffness; the first type of response
parameter is useful for comparing the nonlinear iso-
lation system response with that of a reference linear
system, whereas the second type is particularly use-
ful for design purposes. Optimum design parameters
for the nonlinear isolators are given, corresponding
to the condition wherein the transmitted acceleration
or force is a minimum. The optimum- designs do not
-necessarily represent the best overall design, how-
ever, since an evaluation of the variation of isolation
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Figure 27 ;——‘Force-de[lectlon curoe for tangent elasticity

isolator.
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Figure 28 — Acceleration or force and displacement re-
sponse maxima for velocity shook excitation: of an un-
damped isolation system with tangent elasticity isolators.

system response maxima about the optimum condi-
tion may indicate that, for a given. application, a
combination of acceleration or force and. displace-
ment. response magnitudes other than the minimax
values provided by the optimum design is more
desirable. Furthermore, other design. considerations
such as vibration isolation and sustained loading.
requirements may necessitate the use of isolator stiff-
ness characteristics that are not compatible with
optimum nonlinear stiffness design parameters for
velocity shock excitation,

Tangent Elasticity Isolator. A hardening isolator
stiffness characteristic may be described in terms of
tangent elasticity, which is expressed mathematically
by the following force-deflection relation® 1. 13, 30

F(5) = 2o, ,ﬁ) (42)
T 28,

18



where Kk, is the initial stiffness of the isolator and 8o .

represents. the maximum available displacement, as
indicated in Figure 27. This force-deflection charac-
teristic may be used to represent an isolator stiffness
that increases with displacement and eventually ex-
periences relatively smooth bottoming at a specified
maximum displacement. '

The acceleration or force and displacement re-

sponse maxima of an isolation system employing a
tangent elasticity isolator for ‘velocity shock excita-
tion are presented in Figure 28. The dimensionless
response parameters provided by the upper graph
are the ratio of maximum response magnitudes to
the magnitudes that would exist for'a linear isolator
having a stiffness ko, The lower graph provides the
ratio of maximum response magnitudes to param-
eters that are characteristic of the tangent elasticity
force-deflection curve. When compared to the per-
formance of a linear isolator of stiffness ks, the
tangent elasticity isolator provides a Tower displace-

ment response and an increased acceleration or force

response. For low values of the velocity change V,

the performance of the tangent elasticity isolator -

nearly equals that of the linear isolator, with a devi-

ation in performance apparent for values of velocity

change V > 0.5 w,8,, where wo = (ko/m) %,

The optimum design for tangent elasticity isolators
corresponds to the condition wherein the acceleration
or force response magnitude is a minimum for a
specified maximum available displacement 8,. The
optimum values of the initial stiffness ks and the
natural frequency @, are as follows

(ko) op = LESmV2/5,2 " (48)
(@0)op = 1.24V/5, (44)

The resulting optimum values of acceleration or force’
and displacement response magnitudes are

oneligor [Felaec ] _yosvase, (a5
op

(8mpx)op or (Xmu)op = 0'760 (46)

The optimum design condition, which corresponds
to a value of the velocity change parameter
V/we8y = 0.8, results in an accelération or force
response magnitude that is 56 percent greater than
the corresponding response magnitude for a linear
isolator of stiffness ko, while the displacement re-
sponse magnitude is 13 percent less than that of the
linear isolator.

Hyperbolic Tangent Elasticity Isolator. A softening
isolator stiffness characteristic may be described in
terms of hyperbolic tangent elasticity, which is ex-
pressed by the following force-deflection relation!!: 13

B@) =Founh (22) ()

where k, is the initial stiffness of the isolator and Fo
represents the "maximum .allowable force, as indi-

FORCE, F
N
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Figuie 29 — Force-deflection curve for hyperbolic tan-
gent elasticity isolator.
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Figure 30 — Acceleration or force and displacement re-
sponse maxima for velocity shock excitation of an
undamped isolation system with hyperbolic tangent elas-
ticity isolators.

cated in Figure 29. This type of stiffness character-
istic may be used to represent an isolator that exhibits
a stiffness that decreases with displacement and
eventually approaches zero.

The acceleration or force and displacément re-
sponse ‘maxima of an isolation system employing a
hyperbolic tangent elasticity isolator for velocity
shock excitation are presented in Figure 30. The
dimensionless response parameters provided by the

-upper graph are the ratio of maximum response

magnitudes to the magnitudes that would exist for
a linear isolitor having a stiffness k,. The lower

- graph provides the ratio of maximum response mag-

nitudes to parameters that are characteristic of the
hyperbolic tangent elasticity force-deflection curve.
When compared to the performance of a linear iso-
lator of stiffness ky, the hyperbolic tangent elastcity
isolator- provides a' lower acceleration or force re-
sponse and an increased displacement response. For

SOUND AND VIBRATION -
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low values of the velocity change V, the performance

of the hyperbolic tangent elasticity isolator nearly -

equals that of the linear isolator, with a deviation in
performance apparent for values of velocity change
V> 0.5 woFo/k, where wy = (ko/m)%.

The optimum’ design hyperbolic tangent elasticity
isolator corresponds to the “ideal” shock isolator
stiffness for which ky = o0 and a constant force F,
is provided for all deflections as illustrated in Figure

25, The minimax displaceinent response for a speci-,
fied maximum magnitude of acceleration or force ‘is’

given by
. (Smnx)op or (xmu)op = ".nV2/2Fo

and the acceleration or force response magnitude is
as follows -

(Agas)opor [‘—‘-’;’}éﬂ“—] —Fu/mg (49)

For a specified acceleration or force response magni-

‘tude, the optimum design condition resulfs in a dis-

placément response magnitude equal to one-half that
of a linear isolator.

Bilinear Stiffuess Isolators. A hardening or soften-
ing stiffness characteristic may be represented by a
bilinear stiffness isolator, which exhibits different
Inear stiffnesses over two isolator deflection ranges.
The force-deflection relations are given byl '

F(8) =kd  (0<8<'8)
(50)
F(@) ==Ky 8—(ky —kg) 8, (80 < 8< )

where kg is the initial stiffness of the isolator, ky is
the stiffness of the isolator for large deflections, and
8y is the deflection 'at which the isolator stiffness
changes from k, to ky, as indicated in Figure 31. A
hardening stiffness characteristic is exhibited when
ki > ko, and the effect of isolator snubbing or

bottoming may be evaluated by considering appro- -

priately large values of the ratio k,/k, By selecting
ky < ko, a softening stiffness characteristic is ob.-
tained, and setting k; = 0 provides the force-deflec-
tion characteristic. of an elastic-plastic (yielding)
isolator, . )
Hardening Bilinear Stiffness Isolator:

The acceleration or force and ‘displacement re-
sponse miaxima of an isolation system employing a
hardening bilinear stiffness isolator for velocity shock
excitation are presented in Figure 32. Curves above
the k;/ky = 1.0 curve provide the maiimumn ‘accel-
eration_or force response, whereas those below pro-
vide the miaximum displacement response. - The
dimensionless response parameters provided by the
upper graph are the ratio of maximum resporise
magnitudes to the magnitudes that would exist for
a linear isolator having ‘a’ stiffness ‘ko. The lower
graph provides the ratio of maximum response mag-
nitudes to parameteis that are characteristic of the
bilinear force-defléction cusve. When compared to
the performance of a linear isolator of stiffness ko,

(48)
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Figure 32— Acceleration or force and displacement re-
sponse maxima for velocity shock excitation of an
undamped isolation system with hardening bilinear stiff-
ness isolators, '

the hardening bilinear stiffness isolator. provides. a’
lower displacement response and an increased accel-
eration or force response. For large values of the
vel.city change parameter V/weBy, the acceleration
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or force response magnitude approaches (ky/ko) %
times that for a linear isolator of stiffness k;, while
the displacement response magnitude approaches

(ko/k{)% times the linear isolator displacement. For -

values of velocity change V << @8y where wy =
(ko/m)*%, the isolation system responds as a
linear system, since the deflection is in the range
0 <8<

For V = w8y, the optimum design for a hard- -

ening bilinear stiffness isolator corresponds to the
condition wherein the acceleration or force response

maxima are a minimum for specified values of stiff--

ness k; and the deflection 8,. The optimum values
of the initial stiffness k, and the natural frequency
@, are as follows

(ko) op =K1/2 (51)
(wo)op _ \/kl/zm (52)

The acceleration or force and displacement response
magnitudes for the optimum design condition of
ki/ky = 2 are c :

' — Frmlx . — kl 80 W
(A"’“)“’_[ mg ]op— 2mg ‘J"x e
: (53)

Gondo =2 [ 14 B0 (30

For values of the velocity change V > 20 a5, the
optimum acceleration ‘or foree response magnitude
is 41 percent greater than the coiresponding response
magnitude for a linear isolator of stiffness ko, while
the optimum displacement response magnitude is 29
percent less than that of the linear isolator,

Elastic-Plastic Isolator:

The maximum displacement response of an isola-
tion system employing an elastic-plastic isolator for
velocity shock excitation is presented in Figure 33.
The upper and lower curves provide the ratio of
maximum response displacement to the displace-
ment o and to the displacement V/w, that would
exist for a linear isolator having a stiffness k,, respec-
tively. The acceleration or force response magnitude
is given by

Aae= L0 _yo (v gty
(55)

Boue=ms 4 5 (V= )
(56)

where @y = (ko/m)*%.

The optimum design elastic-plastic isolator corre-
sponds to the “ideal” shock isolator stiffness for
which ky == oo and a constant force F, is provided
for all deflections, The displacement and accelera-
tion or force response magnitudes are given by Eqs.

(48) and .(49), respectively,
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ticity isolators.

Polynomial Elasticity Isolators, A continuously
varying hardening or softening isolator stiffnéss char-
acteristic may be described in terms of polynomial
elasticity, which is expressed mathematically by the
followng force-deflection relation

F(8) =ky8 ¢, b (8}0) (57)

where k, is the initial stiffness of the- isolator, and
the coefficient €, and the exponent n are positive
numbers. To .account for both positive and negative
values of deflection, the force-deflection relation is
written in the following form: :

F(8) = —F(‘—@) =ky 8 -+ €,|0"sgn(5) (58)
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Figure 34 — Force—deﬂectt'oﬁ curves for polynomial elas-
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Figure 85— Acceleration or force and displacement re-
sponse - maxima for velocity shock excitation of an
undamped. isolation system with hardening quadratic elas-
ticity isolators. . ..

Figure 37 — Acceleration or force and displacement ve-
sponse maxime for velocity shock excitation of an
undamped isolation system with hardening cubic elas-
ticity isolators.
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Figure: 36 — Acceleration or force and displacement re-
sponse maxima for velocity shock excitation of an
undamped isolation system with softening quadratic elas-
ticity isolators,

The plus sign in Eqs. (57) and (58) provides a
hardening stiffness characteristic and the minus sign
provides a softening stiffness - characteristic, as illus-
trated in Figure 34. The higher the values of ¢, and

= G SV NP

Figure 38 — Acceleration or force and displacement .re-
sponse maxima for velocity shock excitation of an
undamped isolation system with softening cubic elas-
ticity isolators.

n, the more severe the stiffness nonlinearity.

Setting n = 2 and 3 provides- equations that repre-
sent quadratic elasticity and cubic elasticity, re-
spectively. Hence, an isolator with quadratic elas-

22



ticity ‘is described "by

the following force-deflection
equation :

F(d) =k b+ 8 . (6>0) (59)
and; for cubic elasticity, the applicable equation is
F) =kd+es (5>0) (60)

.Care must be exercised in employing polynomial
expressions to represent softening stiffness charac-
teristics. As the deflection increases, the stiffness of
a softening polynomial " elasticity isolator decreases
and becomes negative for sufficiently high values of
deflection. Negative stiffnesses are avoided if the
isolator deflection is’ limited as follows

/ ko) 1/(n-1) *
(-
6111!! -— (ne”

The acceleration or force response maxima that

occurs at the maximum allowable isolator- deflection,

as defined by the equality of Eq. (61), is given by
n—1

5 ()"

mg ne,
(62)

For softening quadratic elasticity, §,,; =< ko/2¢,
and (Fp)pax = k¢2/4e€, whereas, for softening cubic
elasticity, Omax = (ko/3€3) % and (Fp)max =
(2ko/3) (ko/3€5) %. To ensure that the isolator ex-
hibits a positive stifiness, the maximum permissible
values of velocity change are approximately V.. =
0.4 woko/€p and V., = 0.5 wo(ko/€5) % for quad-
ratic and cubic elasticity, respectively.

The acceleration or force and displacement re-
sponse maxima of isolation systems employing hard-
ening and softening quadratic elasticity isolators for
velocity shock excitation are presented in Figures 35
and ' 36, respectively, The corresponding isolation
system response maxima for hardening and softening
cubic elasticity are presented in Figares 37 and 38,
respectively. The dimensionless response parameters
provided by the upper graphs are the ratio of maxi-
mum response magnitudes to the magnitudes that
would exist for a linear isolator having a stiffness k.
The lower graphs provide the ratio of maximum
response magnitudes to parameters that are charac-
teristic of the quadratic elasticity or cubic elasticity
force-deflection curves,

(61)

(Fr)mx
mg
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